Diffusion Coefficients for HCI under Conditions approaching Neutrality

C. V. Nicholas,^a M. B. McDonnell,^b and P. Vadgama*^a

^a Department of Medicine (Clinical Biochemistry), University of Manchester, Hope Hospital, Salford M6 8HD, U.K. ^b Department of Chemistry, University of Southampton, Southampton SO9 5HH, U.K.

Direct measurement of HCl diffusion under near-neutral conditions demonstrates much lower neutral diffusion coefficients than previously demonstrated.

Water can be considered to be a condensed phase with a randomly arranged hydrogen bonded structure.¹ The formation and dissolution of hydrogen bonds, which involves protons as well as water molecules, occurs on a time scale of 10^{-12} s.² Within this network, the proton exists principally in

bound form as H_3O^+ with a surrounding hydration shell. The transfer of protons through water occurs *via* a jump mechanism largely consistent with that enunciated by Grotthas. There, a proton passes from one water molecule to the next, through formation of a new hydrogen bond, with local charge

 Table 1. Diffusion coefficients for HCl through a dialysis membrane and underlying spacer.

	$D_{\rm HCl}$
pHª	$/cm^{2} s^{-1} \times 10^{6}$
7.46	0.34
6.44	0.79
5.46	1.18
4.52	1.71
3.50	5.56
^a Midpoint of an individual pH j	ump.

due to the proton leading to reorientation of the water molecule.³ Coupled with this, the diffusion of sites with attached protons may also be important.⁴ This microscopic picture is seen as the basis for the high anomalous mobility of protons in water. The limiting molar conductivity for H⁺ (349.8 × 10⁻⁴ Ω^{-1} m² mol⁻¹ at 25 °C⁵) is five- to nine-fold greater than that of alkali metal cations, and the mutual diffusion coefficient of HCl ($D_{\rm HCl}$) as measured by diffusion chamber apparatus is approximately two-fold greater than that for the corresponding alkali metal salts.²

Hitherto, D_{HCl} has shown only minor reduction as HCl concentration is lowered; thus, the value at 0.05 M (3.07 × 10^{-5} cm² s⁻¹ at 25 °C) is 10.6% of that at 1.0 M.⁶ Direct measurement of D_{HCl} under conditions approaching neutrality, have not been possible, however, in view of the practical difficulty of achieving reliable pH gradients without buffering. We have, therefore, used a simplified single compartment electrode system to estimate D_{HCl} over the pH range 3—7. Dynamic responses at a glass pH electrode were monitored, where the electrode tip was mounted with a single dialysis membrane and a nylon spacer; a 60 µm unstirred film layer. Step changes in pH were induced in a vigorously stirred external solution containing 20 g l⁻¹ albumin⁷ at 23 °C, and D_{HCl} computed using a diffusion boundary layer model⁸ for ion selective electrode dynamic response.

The time to complete 99% of the response (t_{99}) varied from 1—2 min at low pH to 20 min at high pH, and was an order of magnitude greater than t_{99} for the bare electrode throughout the pH range used (<1 s). When a double thickness nylon spacer was used, t_{99} was correspondingly increased; on taking the altered diffusion layer into account, the computed $D_{\rm HCI}$ values remained unaltered within experimental error.

Representative D_{HCl} values for individual pH jumps (Table 1) demonstrate an order of magnitude reduction compared with 0.05 M HCl, and also a marked further reduction towards neutrality where the minimum D_{HCl} is reached. NMR relaxation data⁹ indicate that the proton jump mechanism is unaffected by pH. The reasons for observed D_{HCl} changes are, therefore, obscure, though they may relate to modification in coupling to the alternative diffusional route to proton movement.⁴ Irrespective of the mechanism, the results are of wide general significance for reactions involving protons under near-neutral conditions. In addition, they have implications for pH equilibration within biological systems.

The authors thank the M.R.C. for financial support.

Received, 25th October 1989; Com. 9/04608I

References

- 1 H. E. Stanley and J. Tiexeira, J. Chem. Phys., 1980, 73, 3404.
- 2 R. A. Robinson and R. H. Stokes, 'Electrolyte Solutions,' Butterworths, London, 1970.
- 3 H. G. Hertz, B. M. Braun, K. J. Muller, and R. Maurer, J. Chem. Educ., 1987, 64, 777.
- 4 G. Karlstrom, J. Phys. Chem., 1988, 92, 1318.
- 5 T. Shedlovsky, J. Am. Chem. Soc., 1932, 54, 1411.
- 6 R. H. Stokes, J. Am. Chem. Soc., 1950, 72, 2243.
- 7 P. Vadgama and K. G. M. M. Alberti, *Experientia*, 1983, **39**, 573.
 8 W. E. Morf, E. Lindner, and W. Simon, *Anal. Chem.*, 1975, **47**, 1596.
- 9 R. E. Glick and K. C. Tewari, J. Chem. Phys., 1966, 44, 546.